从宏观角度分析振动时效使零件产生塑性变形,降低和均化余应力并提高材料的抗变形能力,无疑是导致零件尺寸精度稳定的基本原因。从分析余应力松驰和零件变形中可知,余应力的存在及其不稳定性造成了应力松驰和再分布,使零件发生塑性变形。故通常采用热时效方法以消除和降低余应力,特别是危险的降值应力,振动时效同样可以降低余应力,零件在振动处理后余应力通常可降低30—80%,同时也使峰值应力降低使应力分布均匀化。
从微观方面分析振动时效可视为一种以循环载荷的形式施加于零件上的一种附加动应力,众所周知工程上采用的材料都不是理想的弹性体,其内部存在着不同类型的微观缺陷,铸铁中更是存在着大量形状各异的切割金属基体的石墨。故而无论是钢、铸铁或其他金属,其中的微观缺陷附近都存在着不同程度的应力集中,当受到振动时,施加于零件上的交变应力与零件中的余应力叠加。当应力叠加的结果到一定的数值时,在应力集中严重的部位就会**过材料的屈服极限而发生塑性变形。这种塑性变形降低了该处余应力降值,并强化了金属基体,而后振动又在一些应力集中较严重的部位上产生同样作用,直至振动附加应力与余应力叠加的代数和不能引起任何部位的塑性变形为止,此时振动便不再产生消除和均化余应力及强化金属的作用。
据船体分段结构的特点,及多次反复试振,确定工艺参数如下:
(1)支承方式:底部四点支承(如图2所示),由于本次处理受现场条件约束,用建造墩支承。
(2)激振点:如图2所示激振器安装在筋板平面上,用卡具卡紧。
(3)拾振位置:底板端部平面处。
(4)激振器偏心:用IFSVSR-2001型设备,偏心为“4档”。
(5)激振频率:通过扫频可见在VSRDS-08设备频率范围内有两个共振峰,在2855转/分和3195转/分左右,处理时可由加速度辐值来控制。
(6)处理时间:20~30分钟。
2.振动处理监测曲线与分析
船体分段在振动处理时给出了监测曲线(见下页),根据JB/T5926.2005机械行业标准的规定,监测曲线中出现下述三种情况之一,即认为振动处理达到了效果:
其一,时间振幅曲线[G(T)],随着时间在发生变化,即上升型、下降型均可(可由曲线指示或数字显示读数均可)。
其二,幅频特性曲线的对比,振后曲线(虚线)峰值升高。
其三,幅频特性曲线的对比,振后曲线(虚线)峰线左移即频率下降(可由曲线观察或上面数字显示看出)。
根据上述有关规定,观察我们对船体分段处理时获得的曲线图,可以看出:
船体分段的曲线图上时间振幅曲线[G(T)],呈下降型,峰值升高0.2g,峰点的频率从3195转/分变到3130转/分,下降65转/分,由此可以得出结论,本次处理是有效果的。
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤30吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:10A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
柴油机机体粗加工后的振动时效处理
在对机体内应力检测的基础上,得出了机体在粗加工后有较大的内应力是机体在后序加工和使用中变形的主要原因,因此需进行二次时效处理。但在粗加工后再进行热时效,必将引起机体变形**差,并破坏加工面光洁度。经过测试数据分析,机体粗加工后增加振动时效处理作为二次时效工艺是可行的。现将振动时效处理的试验情况报告如下:
1.振动时效设备
本次试验选用了由上海乐展电器有限公司研制的“智能型振动消除应力系统”来处理机体,它是目前国内的新产品,自动化程度高,工艺确定后整个处理及工艺就自动一次完成。
2.机体振动时效试验
先用一台粗加工后废弃机体(16D0033号机体)进行先期试验积累数据,再用两台粗加工后的机体为试件;台用于振动时效技术参数选择(支撑点、激振点、激振器偏心档级、拾振点、激振频率、扫频频率),经振动后进行应力检测,观察振动时效消除应力的效果。*二台用于优化振动时效参数,观察台振动时效参数的稳定性,终确定振动时效工艺规程。
3.台柴油机机体(机体主轴承号:2001—063)振动时效处理
(1)手动操作程序:
①将机体立放于平地上,并做三点支撑:一侧面中间支撑一点,另一侧面两点支撑,均用厚橡胶垫为支撑物。
②将激振器(A型)装卡在右**板七、八缸孔之间,调整偏心为二档。
③将拾振器吸在靠近一号缸孔的端部右**板角处。
④连接电机-控制箱,拾振器-控制箱间连线。
⑤连接电源线。
⑥手调节电机转速至4200r/min振动处理30min。
⑦振动处理同时记录加速度指数随时间变化的量值。
(2)自动操作
①现场布置同“手动操作程序”的①②③④⑤
②将扫频值定在4500r/min。
③按自动处理钮后全过程自动完成。
处理曲线见图一、图二。
(3)工艺效果检测
①由图一、图二见振动处理过程中,幅频特性曲线左移峰值上升,时间—振幅曲线由上升逐渐变平,完全符合国家标准JB/T5926-98要求。
②测试表明,振后残余应力普遍降低和均化,但应力总水平下降率只有21.6%低于国家标准(JB/T5926-98)中的有关规定。
③结论:工艺基本符合,但需加大激振力。
4.*二台机体(机体主轴承号:96-098)振动时效处理
(1)*二台机体的振动时效处理与台不同之处在于两点:
①将A型激振器改为B型,以激振力。
②将激振点选在两处进行试验,即次在1~2缸孔之间,*二次在7~8缸孔之间,即为二次振动。其他参数不变。
(2)工艺效果检测
①幅频特性曲线及时间—振幅曲线变化正常。
②由表七可见,振后残余应力普遍下降,且总应力水平下降40%以上,已完全符合国家标准(JB/T5926-98)要求。
振动平台振动时效工艺
对于一些中、小件,如果单个进行振动时效处理,肯定是令人的事,这时您可以考虑采用振动台式的方式。关于振动台得设计问题是一个非常复杂的问题,既不懂振动时效原理,又对理论学知之甚少的人是难以胜任的。我曾遇到过多次这样的事情,有限是振动时效设备生产厂家的人员和用户讲,您们焊块大钢板,把工件紧在上面就可以了,结果用户这样做了,但起不到效果。在去年被邀请到一家钢铁厂去帮助解决问题。他们提出了用振动台处理构件加工后变形仍很大,我看过他们的振动台后,告之他们问题就在振动台上,在振动处理时工作台得刚度很明显的小于工件的刚度,这样激振器的能量(或者说动应力)怎么能通过工作台加工到工件上呢?后来帮助他们重新设计,修改。效果就不一样了,完全合格。
总结起来说设计振动台必须牢记以下原则:
1、首先要保证振动台的刚度应大于工件的刚度。
2、应使振动台和工件组成一体系的中性面接近工件和振动台的接触面。
3、振动台的大小应以工件的大小及批量来确定。
振动台上工件的布置应以工件获得能量为原则。
108吨矿用自卸汽车的**厂,经明,该车性能良好、结构合理。但是,由于作业环境比较恶劣,运行中的汽车车架多次出现断裂裂纹,裂纹部位多发生在中横梁管环缝焊接处及举升轴侧加强板上。
分析认为除材料本身特性及结构应力等原因外,主要是焊接应力造成的(全车四个大的环缝焊区包含五十二个小的焊接环缝)。经动应力测试,该车架大部分焊缝区的焊接应力在0.5~0.7σS,个别点接近σS量级。
为消除或降低108吨汽车车架焊接残余应力,防止断裂裂纹发生,原计划建造大型焖火窑,进行热时效处理,但因费用昂贵,未能实施。2005年四月份,厂方与上海乐展电器有限公司一起,经过多次试验研究,用振动时效处理代替热时效消除或降低108吨汽车车架焊接残余应力,效果十分理想。
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤30吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:10A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
主要技术参数
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:2200W;
适宜处理工件重量:≤100吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:80A;
电机额定电压:2000V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
http://zhizhi2030.cn.b2b168.com
欢迎来到陕西安烨顺电子科技有限公司网站, 具体地址是陕西省西安市未央区世纪大道,联系人是刘智。
主要经营陕西安烨顺电子科技有限公司主营:振动时效,振动时效设备,振动时效装置,振动时效仪,振动时效机,应力消除设备,提供重大及重点工程项目的大型金属结构的振动时效现场技术咨询与技术服务;提供残余应力检测服务等。。
单位注册资金单位注册资金人民币 100 万元以下。
我公司在机械产品领域倾注了无限的热忱和激情,公司一直以客户为中心、以客户价值为目标的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌,携手共创美好明天!