金属构件在机械加工过程中会产生导致尺寸精度和稳定性降低的余应力,目前普遍采用热时效和传统振动时效(即亚共振时效)消除余应力。每吨工件热时效费用至少500元,消耗180千克标准煤,排放410千克二氧化碳和13千克二氧化硫。这样一个成本高、能耗大、污染严重的传统工艺竟然沿用至今。而传统振动时效噪音大、振型单一、效果欠佳、处理范围受限、操作繁琐、操作者需有丰富的工艺经验,特别对于高刚性、高固有频率的工件更是传统振动时效的禁区。
一、 振动频率的确定
在共振状态下,可用小的振动能量,使工件产生的振幅,得到的动应力和动能量,从而使工件中的残余应力消除的更彻底,工件获得的尺寸稳定性效果更好。
振动时效中的共振状态,是在外部激振器激振力的持续作用下,零件处于“受迫振动”时的一个状态。它的条件是激振频率接近工件的固有频率,这时振动特性中的振幅—频率曲线出现一个峰值,振幅的陡然对振动时效产生附加动应力有利。
工件在振动时效时是一个振动体,它与其支撑用的弹性橡胶垫和激振器组成为一个振动系统,当该系统进行自由振动时,根据振动学原理,它的共振频率仅与系统本身的质量、刚度和阻尼有关。这个频率是由系统固有性质所决定的,称为固有频率。
振动时效中一个工件和它的支撑体组成振动学中一个质量和一个弹簧的振动系统,它的固有频率可用下列通式表示:
(4-1)
式中: -----固有频率(HZ);K---弹簧的刚度(Kg/cm);
m---振动体质量(Kg)。
图4-1示出了某均质等截面梁弯曲的频率及相应的振型。
由振动频率的方程解及上图可知,具有几个自由度的振动系统,有几个固有频率,按低**
频顺序分别称为:固有频率(基本固有频率);*二个固有频率……。对于每一个固有频率都有一个确定的位移形态,称为振型,就是说,对应每一个固有频率都有对应的一个振型。
工件的固有频率可用振动时效设备本身来测定,以VSR系列振动时效设备为例,只要按一下控制器面板上的“启动”按钮,整套装置就会在其扫频范围内寻找出被时效工件的固有共振频率,并将固有频率值、固有频率下所对应的工件的振动加速度值及工件在固有频率周围的振动趋势图打印出来,使操作者一目了然。
图4-2
振动频率一般选择在共振峰*,即工件的亚共振区,一般确定在共振峰高度的 所对应的频率范围内,如图4-2所示,该工件的固有共振频率为4500r/min,共振时产生的振动加速度(峰值)为60.0m/s2,则对工件的振动时效频率就确定为工件的振动加速度值在20.0~40.0m/s2区域内所对应的频率。具体的确定方式有两种:
1.手动调节。首先将激振器频率调节到工件固有频率以下100r/min处,即4400r/min,观察控制器上加速度的值,然后再用手动慢慢升速,使加速度值升高在20~40m/s2范围内,具体掌握在多大的频率下,还要看工件的振动情况,若工件在共振状态时振动很激烈,则可选择在 范围内,若工件振动不是很激烈,则选择在 范围内。
2.自动调节。VSR系列全自动控制器会自动地控制整套设备对工件进行频率、振动情况的测定,并给出数据及曲线图,并根据系统自动地确定对工件的振动频率,这一切*人工干预,而只需按一下自动按钮就可完成。
振动时效的原理
国内外大量的应用实例,振动时效对消除和均化残余应力,稳定工件的尺寸精度具有良好的作用。同时对振动时效的机理也做了大量的研究和探讨。
从宏观角度分析,振动时效使零件产生塑性变形,降低和均化残余应力并提高材料的抗变形能力,无意识导致零件尺寸精度稳定的基本原因。从分析残余应力松弛和零件变形中可知,残余应力的存在及其不稳定性造成了应力松弛和再分布,使零件发生塑性变形。故通常采用热时效方法以消除和降低残余应力,特别是危险的峰值应力。振动时效同样可以降低残余应力。零件在振动处理后残余应力通常可降低30~55﹪,同时也使峰值应力降低,使应力分布均匀化。
除残余应力值外,决定零件尺寸稳定性的另一种重要因素是松弛刚性,或零件的抗变形能力。
有时虽然零件具有较大的残余应力,但因其抗变形能力强,而不致造成大的变形。在这一方面,振动时效同样表现出明显的作用。由振动时效的加载实验结果可知,振动时效件的抗变形能力不仅**未经时效的零件,也**经热时效处理的零件。通过振动而使材料得到强化,使零件的尺寸精度达到稳定。
从微观方面分析,振动时效可视为一种以循环载荷的形式施加于零件上的一种附加动应力。众所周知,工程上采用的材料都不是理想的弹性体,其内部存在着不同类型的微观缺陷。铸铁中更是存在着大量形状各异的切割金属基体得石墨。故而无论是钢、铸铁或其他金属,其中的微观缺陷附近都存在着不同程度的应力集中。当受到振动时,施加于零件上的交变应力与零件中的残余应力叠加。当应力叠加的结果达到一定的数值时,在应力集中严重的部位就会**过材料的屈服极限而发生塑性变形。这种塑性变形降低了该处残余应力峰值,并强化了金属机体。而后,振动又在一些应力集中较严重的部位上产生同样作用,直至振动附加应力与残余应力叠加的代数和不能引起任何部位的塑性性别为止,此时,振动便不再产生消除和均化残余应力及强化金属作用。上述解释已由大量的试验加以。
此外,我更主张从错位、晶格滑移等金属学理论上去解释振动时效机理。其主要观点是振动时效处理过程实际上是通过在工件的共振状态下,给工件的每一部位(从微观角度说是工件里的每一个微观晶格)施加一定的动能量,如果施加的这个能量值与微观组织本身原有的能量值(残余应力本身是一种势能)之和,足以克服微观组织周围的井势(也可以说是对恢复平衡的束缚力),则微观区域必然会产生塑性变形,使产生残余应力的歪曲晶格得以慢慢地回复平衡状态,使应力集中处地位错得以滑移并重新钉扎,达到消除和均化残余应力的目的。对于残余应力集中的地方,残余应力值较大,其微观组织本身所具有的回复平衡状态的势能值也较大,所以,此处的残余应力在震动处理过程中消除的就越多。只有从这一观点上才能解释通许多用种观点所解释不通的一些现象,比如:在振动处理过程中我们只需施加一个方向的主动应力,就能消除包括垂直主动应力方向上的所有残余应力等
振动时效技术的原理及应用
近十多年来,国内外使用振动处理的方法消除金属构件内的残余应力,以防止构件变形和开裂,代替传统的热时效和自然时效。这种技术在国外称做”VSR”技术,它是”Vibratory Stress Relief”的缩写,由于这种方法可以降低和均化构件内的残余应力,因此可以提高构件的使用强度,可以减小变形而稳定构件的精度,可以防止或减少由于热时效和焊接产生的微观裂纹的发生。特别是在节省能源、缩短生产周期上具有明显的效果,因此被许多国家大量使用。我们在该项技术的机理研究和应用上取得了较大的进展。
一、振动时效工艺的简单程序
振动处理技术又称做振动消除应力法,在我国称做振动时效。它是将一个具有偏心重块的电机系统称做激振器安放在构件上,并将构件用橡胶垫等弹性物体做支撑,如图所示。
通过控制器启动电机并调节其转速,使构件处于共振状态,约经20—30分钟的振动处理即可达到调整残余应力的目的。图中的振动测试系统是用来监测动应力幅值及其变化的。实际生产上使用中不需要做动应力监测,振动时效设备本身具有模拟振幅监测系统。
可见,用振动调整残余应力的技术是十分简单和可行的。
残余应力对金属构件的影响
残余应力的存在对金属工件的强度疲劳寿命结构变形等方面的影响都是很大的,因此在结构设计中必须予以考虑。
§2.31残余应力对疲劳寿命的影响
人们很早就已经知道:当受到交变应力的构件存在压缩残余应力时,该构件的疲劳强度会有所提高,而存在拉伸残余应力时,从而有效地提高疲劳强度。但是很多情况下,构件表面存在着拉伸残余应力,从而有效地提高疲劳强度。但是很多情况下,构件表面存在着拉伸残余应力,人们首先考虑的是如何来改变这种应力分布以提高疲劳寿命,这就是调整残余应力问题,这与考虑残余应力对变形的影响是不相同的,后者考虑的是如何降低或消除残余应力以保证变形的稳定性。
实际上,残余应力对疲劳的影响因条件和环境的不同而改变。他与残余应力分布规律和量值、材料的弹性性能、外来作用的状态等因素有关。当我们研究残余应力对疲劳的影响是既要考虑宏观残余应力的影响,也要考虑微观残余应力的影响。
可以认为,宏观残余应力在初期暂时与作用的交变应力叠加,改变盈利水平,较大的影响着疲劳寿命。而由微观组织不均匀性所造成的残余应力在应力交变过程中,会使微观区域内的塑性变形积累,使该部分产生应力集中,并使组织内发生裂纹。这些影响比起对静强度的影响来说,在实用上将更为重要。
设备组成清单如下:
序号 产品名称 单位 数量 备注
1 振动消除应力设备主机 台 1
2 激振器 台 1
3 拾振器 只 1
4 橡皮垫 只 4
5 弹簧钢卡具 只 2
6 电机控制线 组 1
7 随机工具一套 套 1
8 拾振器传感信号线 根 1
9 电源线 根 1
10 热敏打印纸 卷 9
11 培训资料 套 1
12 保险管 只 10
http://zhizhi2030.cn.b2b168.com
欢迎来到陕西安烨顺电子科技有限公司网站, 具体地址是陕西省西安市未央区世纪大道,联系人是刘智。
主要经营陕西安烨顺电子科技有限公司主营:振动时效,振动时效设备,振动时效装置,振动时效仪,振动时效机,应力消除设备,提供重大及重点工程项目的大型金属结构的振动时效现场技术咨询与技术服务;提供残余应力检测服务等。。
单位注册资金单位注册资金人民币 100 万元以下。
我公司在机械产品领域倾注了无限的热忱和激情,公司一直以客户为中心、以客户价值为目标的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌,携手共创美好明天!